
Robust Basket Recommendation via
Noise-tolerated Graph Contrastive Learning

Xinrui He∗
University of Illinois at Urbana

Champaign
USA

xhe33@illinois.edu

Tianxin Wei∗
University of Illinois at Urbana

Champaign
USA

twei10@illinois.edu

Jingrui He
University of Illinois at Urbana

Champaign
USA

jingrui@illinois.edu

ABSTRACT
The growth of e-commerce has seen a surge in popularity of plat-
forms like Amazon, eBay, and Taobao. This has given rise to a
unique shopping behavior involving baskets – sets of items pur-
chased together. As a less studied interaction mode in the com-
munity, the question of how should shopping basket complement
personalized recommendation systems remains under-explored.
While previous attempts focused on jointly modeling user pur-
chases and baskets, the distinct semantic nature of these elements
can introduce noise when directly integrated. This noise negatively
impacts the model’s performance, further exacerbated by signifi-
cant noise (e.g., a user is misled to click an item or recognizes it
as uninteresting after consuming it) within both user and basket
behaviors. In order to cope with the above difficulties, we propose
a novel Basket recommendation framework via Noise-tolerated
Contrastive Learning, named BNCL, to handle the noise existing
in the cross-behavior integration and within-behavior modeling.
First, we represent the basket-item interactions as the hypergraph
to model the complex basket behavior, where all items appearing
in the same basket are treated as a single hyperedge. Second, cross-
behavior contrastive learning is designed to suppress the noise
during the fusion of diverse behaviors. Next, to further inhibit the
within-behavior noise of the user and basket interactions, we pro-
pose to exploit invariant properties of the recommenders w.r.t aug-
mentations through within-behavior contrastive learning. A novel
consistency-aware augmentation approach is further designed to
better identify the noisy interactions with the consideration of
the above two types of interactions. Our framework BNCL offers a
generic training paradigm that is applicable to different backbones.
Extensive experiments on three shopping transaction datasets ver-
ify the effectiveness of our proposed method.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Recommender systems have become a powerful tool that greatly en-
hances shopping experiences on online platforms ever since their
inception [1, 4]. In practice, customers often purchase multiple
items at the same time, and the co-occurrence relationships could
provide rich information in item properties mining. Basket recom-
mendation [39] is to predict a set of relevant items that a customer
will be interested in by analyzing the composition of the historical
interactions and the current shopping baskets if given 1, which can
be better used for product arrangement, procurement, promotion,
and marketing [12] to improve customer experience and generate
business value.

There are an increasing number of works [5, 14, 25] trying to
explore the customer’s order history to capture the users’ shop-
ping preference and item semantics, with the aim of improving
the recommendation quality and boosting online service. However,
not all of the order details in the transaction data are essential and
relevant to determining the user’s next action. There are usually
some user-item interactions as well as basket-item interactions ap-
pearing as noise due to the diversity of the basket contents and the
users’ mismatched behaviors. In practice, the noisy interaction oc-
curs in the shopping transaction data for the reason that the users’
shopping behavior is somewhat random and fragmented, meaning
that users sometimes buy items against their shopping habits or
there are some items in the basket that are not related to any others.
The existence of such noisy interactions is verified [33, 49, 51] to
hinder the understanding of the user’s behavior patterns, which
will harm the recommender system training and thus hinder its
practical deployment.

Therefore, it is necessary to denoise in basket recommendation
(BR) to extract effective information to enhance recommendation
performance. However, most existing BR methods [3, 24, 41] mainly
tend to jointly model purchases and baskets which will introduce
noise to the learned representations due to the heterogeneity of user

1A customer may go to this supermarket to buy products many times during a period.
Then this customer has multiple shopping baskets

https://doi.org/10.1145/3583780.3615039
https://doi.org/10.1145/3583780.3615039


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Trovato and Tobin, et al.

basket 1

noise in user purchase behavior

noise in basket behavior

basket 3basket 2

user

Figure 1: An example of the noise in the basket recommenda-
tion: in terms of content relevance in the basket, the food in
basket 3 is the noisy item; from the perspective of the users’
shopping preferences, it is the electronics in basket 3 that
might be treated as the noise. From both two perspectives,
the racket shows up as a consistent noise.

purchases and basket behaviors. To suppress the noise in recom-
mender systems, current works can be classified as follows: (i) The
first line of work [30, 49, 51] focuses on improvingmodel robustness
[38] against user interaction noises.; (ii) Another emerging series
of papers [23, 33] put their attention on inhibiting the negative
effect of noisy basket behaviors. Both the two types of works only
consider the noise within one behavioral pattern, while the joint
noise handling of the above two behaviors remains unexplored.
What’s more, the semantic mismatch of user purchases and basket
behaviors will introduce additional noise during the behavioral
fusion process. Consequently, it’s essential to design the denoise
method from a global view that considers the comprehensive in-
formation from both two behaviors. To illustrate the noise, we also
give an example in Figure 1, which presents the consuming history
of a user from the view of user purchase behavior (below) and the
view of basket behavior (above). We observe that, from the basket
behavior view, the bread in the basket 3 can be regarded the out-
lier with high probability. However, if we take a look at the user
purchase behavior, the bread could not be treated as an anomaly
while the computer and mouse are more likely to noise for the user.
Moreover, if we look at the racket, which is both unimportant in
the two views, there is a high probability for it to be a consistent
noise. From the example, we’re inspired that it’s crucial to design
the denoise approach that considers information comprehensively
from both within and across the two behavior views.

In this paper, we propose a comprehensive within-basket recom-
mendation framework BNCL via noise-tolerated contrastive learning
to handle the noise existing in the cross-behavior integration and
within-behavior modeling. To be more specific, first, we adopt the
typical user-item bipartite graph tomodel the user-item interactions
from the user purchase behavior, and the basket-item interactions
for the basket behavior are represented as the hypergraph to model
the complex basket behavior, where all the items appearing in the
same basket are treated as a single hyperedge. Secondly, we pro-
pose cross-behavior contrastive learning to fuse the representations

learned from the basket behavior into recommender systems, which
aims at suppressing the noise introduced by the fusion of diverse
behaviors. Then, to handle the within-behavior noise of the user
and basket interactions respectively, we propose to exploit invari-
ant properties of the recommenders w.r.t augmentations through
within-behavior contrastive learning. During the process, a novel
consistency-aware augmentation method is proposed to better iden-
tify the noisy interactions with the comprehensive information of
both the two types of behaviors. To optimize the model, we leverage
a multi-task training strategy to jointly optimize the classic recom-
mendation task and the self-supervised contrastive denoising task.
In summary, the contributions of this paper could be summarized
as follows:

• This work formulates the idea of integrating the basket behaviors
into user-item interaction modeling with a light hypergraph mes-
sage passing schema as well as a joint self-supervised learning
paradigm.

• We systematically illustrate the noise issues in the within-basket
recommendation problem and propose a general basket rec-
ommendation framework BNCL to improve robustness against
the within-behavior and cross-behavior noise issues via noise-
tolerated contrastive learning.

• Extensive experimental results over three shopping transaction
datasets show that our proposed method outperforms state-of-
the-art baselines in terms of various ranking metrics.

The rest of the paper is organized as follows. We show the prelim-
inary definition in Section 2 and introduce the proposed BNCL in
Section 3. Then we present the experimental results in Section 4.
Section 5 briefly discusses the existing work. In the end, we con-
clude the paper in Section 6.

2 PRELIMINARY
2.1 Within-basket Recommendation Setting
As a common practice, we use𝑈 = {𝑢1, 𝑢2, . . . , 𝑢 |𝑈 | } to represent
all users and 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖 |𝐼 | } to represent all items where |𝑈 |
and |𝐼 | denote the number of the users and the items respectively.
We consider the basket as a set of items that the user ordered in
one transaction. Therefore, we will obtain an interaction basket
sequence according to the transaction record of the user 𝑢, which
is denoted as 𝐵𝑢 =

(
𝑏𝑢1 , 𝑏

𝑢
2 , . . . , 𝑏

𝑢
|𝐵𝑢 |

)
where |𝐵𝑢 | is the number of

the baskets that user 𝑢 has purchased and 𝑏𝑢
𝑗
⊆ 𝐼 represents the

𝑗𝑡ℎ basket purchased by user 𝑢. Within-basket recommendation
task aims to recommend the most possible item list to be added to
a partially given basket 𝑏𝑢𝑝 associated with a user u.

2.2 User-item Interaction View Learning
In the raw transaction data, each user and item is assigned a unique
ID respectively. We use a 𝑑 dimension embedding to represent each
user and itemwhere e𝑢 ∈ R𝑑 is the embedding of the user, e𝑖 ∈ R𝑑 is
the embedding of the item. To capture the users’ purchase behavior,
we adopt the idea of the user-item bipartite graph to model the
user-item interactions, in which the user and the item are treated
as nodes. If the user 𝑢 has bought the item 𝑖 , there will be an edge
connecting these two nodes on the user-item interaction graph.
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Figure 2: The overall framework of BNCL. (i) In the view of
basket behavior, the yellow hyperedges denote the baskets
and the nodes denote the items. In the user purchase be-
havior, the blue edges represent the user-item interactions.
(ii) We adopt within-basket contrastive learning between
the augmented graph and the original graph for this two
behavior respectively. (iii) The augmented views of the user
purchase behavior and the basket behavior are obtained by
the proposed consistency-aware augmentation. (iv) Cross-
behavior contrastive learning helps to better fuse the item
properties learned from two behaviors.

We adopted the graph convolutional network LightGCN [17] to
perform the message passing on the user interaction graph. Fol-
lowing LightGCN, the 𝑘-th layer information propagation on the
user-item bipartite graph could be described as follow:

e(𝑘 )𝑢 =
∑
𝑖∈N𝑢

1√
|N𝑢 |

√
|N𝑖 |

e𝑈 (𝑘−1)
𝑖

e𝑈 (𝑘 )
𝑖

=
∑
𝑢∈N𝑖

1√
|N𝑖 |

√
|N𝑢 |

e(𝑘−1)𝑢

(1)

where e(𝑘 )𝑢 , e𝑈 (𝑘 )
𝑖

∈ R𝑑 are the embedding of the user 𝑢 and the
item 𝑖 at 𝑘-th layer respectively. We randomly initialize the user
and item embedding e(0)𝑢 , e𝑈 (0)

𝑖
at the very beginning.

To take the aggregating information at different depths into
account, the final representations e𝑢 and e𝑈

𝑖
of the user and the

item are obtained as the mean of the output embedding of different
layers:

e𝑢 =
1
𝐾

𝐾∑︁
𝑘=0

e𝑘𝑢 (2)

e𝑈𝑖 =
1
𝐾

𝐾∑︁
𝑘=0

e𝑈 (𝑘 )
𝑖

(3)

where 𝐾 is the number of the layers, e𝑢 and e𝑖 are the final repre-
sentations of the user and the item.

2.3 Contrastive learning
Intuitively, the different views of the same sample are likely to be
clustered in the embedding space. Contrastive learning (CL) aims at

learning good data representations by reducing the distance of the
defined positive pairs while pushing away the representations of
the negative pairs in the embedding space. The main process of CL
[42] is to first construct the diverse views of the raw data through
an augmentation set A. Given a data point 𝒙 , the augmentation
results of 𝒙 are denoted as A(𝒙), which are treated as the positive
pairs, otherwise, the negative pairs. CL tries to learn an encoder 𝑓
such that the positive pairs are well aligned and the negative ones
have been pushed apart. We denote the 𝒛(𝒙) as the representation
of sample 𝒙 in the embedding space. To achieve this goal, a class
of methods employed InfoNCE [7, 9, 32] as the contrastive loss
function, formulated as:

LInfoNCE =
∑︁

𝑥∈X,𝑥 ′∈A(𝑥 )
− log

exp (sim (𝑥, 𝑥 ′) /𝜏)∑
𝑥𝑘 ∈X exp (sim (𝑥, 𝑥𝑘 ) /𝜏)

(4)

where X is the set of data samples in a mini-batch, 𝑥 ′ is the aug-
mented view of a random data point 𝑥 , sim(·, ·) is a similarity func-
tion and 𝜏 is the temperature coefficient used to control the uni-
formity of the representation in the embedding space. In this case,
the model is more likely to learn the more invariant and essential
properties of the raw data by mapping the positive pairs into the
nearby space.

To adapt to the downstream task, it is natural to adopt the con-
trastive objective as a ladder combined with supervised signals to
form a multitask learning objective.

3 METHOD
In this section, we introduce the proposed BNCL. The overall frame-
work is shown in Figure 2. First, we model the user-item and basket-
item interactions from the user purchase behavior and the basket be-
havior through a user-item interaction graph and a complementary
basket hypergraph respectively. Then, we propose cross-behavior
contrastive learning to eliminate the noise introduced in the fusion
of the representations learned from purchase and basket behavior.
Finally, within-behavior contrastive learning is employed in the
user’s purchase behavior and the basket behavior respectively for
denoising these two behaviors. In addition, a consistency-aware
augmentation is designed in the within-behavior contrastive learn-
ing to help identify the true noisy interactions.

3.1 Complementary View Learning
In the basket recommendation task, the orders are usually unique
to the users, which means it is not likely that two customers share
exactly the same basket. Compared with user-basket interactions,
what matters most is the interactions between users and items,
which contains the cross-basket information, as well as the interre-
lated information among items within a basket. Thus, we propose
to learn the representations from both the user purchase behavior
and the basket behavior.

For the user purchase behavior, which contains the user-item in-
teractions, we employ the user-item interaction graph and perform
LightGCN message passing on it to learn the representations of the
user and item, denoted as e𝑢 and e𝑖 . From the user purchase behav-
ior, we encode the user’s personalized information and shopping
preferences to the user and item embedding.
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Different from the general recommendation task, the basket
recommendation scenario is provided with the shopping basket
records which contain valuable correlation information about the
items. Specifically, the compositions in a basket often imply the
complementarity, similarity, or substitution relationships among
the item. The basket behavior is encoded in the basket-item inter-
actions, which serves as a supplementary part to extract effective
item properties for recommendation. We use a basket hypergraph
Gℎ𝑦𝑝𝑒𝑟 = (𝑉 , 𝐸) to model the basket behavior for the following
reasons. (i) In the hypergraph, a hyperedge can connect two or
more vertices [59], which can well model the diverse relationship
between a basket and multiple items. (ii) The hypergraph has the
ability to aggregate high-order information through the message
passing among hypernodes and hyperedges, which is essential to
capturing the complex relations between various baskets and items.
Here 𝑉 is the set of vertices and each vertice represents an item
in the item set. We use 𝜖 to denote the basket-item interactions,
which means that a hyperedge 𝜖 ∈ 𝐸 denotes a basket 𝑏 and the
vertices it connects represent all the items belonging to this basket.
The basket hypergraph contains |𝐼 | vertices and𝑀 hyperedges. The
relationship between vertices and hyperedges can be described by
an incidence matrix 𝐻 ∈ R |𝐼 |×𝑀 defined as follows:

H(𝑣, 𝜖) =
{

1, if 𝜖 ∈ 𝐸
0, otherwise (5)

Following the spectral hypergraph convolution proposed in [11],
we design light message passing on the constructed hypergraph to
effectively perform the information aggregation with hyperedges
as the mediators. The representation of vertices 𝐸𝐵 (𝑘 )

𝐼
at 𝑘𝑡ℎ layer

is obtained as :

E𝐵 (𝑘 )
𝐼

= D−1/2HB−1H𝑇D−1/2E𝐵 (𝑘−1)
𝐼

(6)

where𝐷 ∈ R |𝐼 |× |𝐼 | and𝐵 ∈ R𝑀×𝑀 are the diagonal degreematrices
of the vertices and the hyperedges, where each entry denotes the
degree value of corresponding items/hyperedges. 𝐸𝐵 (𝑘 )

𝐼
∈ R |𝐼 |×𝑑𝑘

is the item embedding matrix at the 𝑘𝑡ℎ layer on the hypergraph
and 𝑑𝑘 is the hidden size of 𝑘𝑡ℎ layer. We use 𝑒𝐵 (𝑘 )

𝑖
to denote the

representation of item 𝑖 at the 𝑘𝑡ℎ layer, which is equal to the 𝑖𝑡ℎ

row of 𝐸𝐵 (𝑘 )
𝐼

.
We use the mean of the representations at different layers as the

final representation of the items learned from the basket behavior:

e𝐵𝑖 =
1
𝐾

𝐾∑︁
𝑘=0

e𝐵 (𝑘 )
𝑖

(7)

Defining N𝑏 = {𝑖 | H(𝑖, 𝑏) = 1} as the items incorporated in the
basket 𝑏, we can obtain the final basket embedding from the items:

e𝑏 =
1

|N𝑏 |
∑︁
𝑖∈N𝑏

e𝐵𝑖 (8)

3.2 Cross-behavior Contrastive Learning
Item embedding e𝑈

𝑖
and e𝐵

𝑖
, learned from the user purchase behavior

and the basket behavior, capture inherent semantic properties of
different views. However, loosely integrating them together may
lead to suboptimal results due to the inconsistent feature space
and view aggregation schema. To accomplish the fusion of diverse

behaviors, in this section, we propose cross-behavior contrastive
learning to suppress the noise during the fusion of the user purchase
behavior and the basket behavior.

Motivated by the core idea of CL, we introduce cross-behavior
contrastive learning to align the representation of the same item
generated from different behaviors, which could unify the item
embedding into the same feature space and further explore the
intrinsic semantic properties of the item.

The representation of the same item should share the same in-
trinsic semantic properties. Thus, we define the positive pairs as
the embedding of the same item learned from the augmentation
views of the user purchase behavior and the basket behavior, de-
noted as ê𝑈

𝑖
and ê𝐵

𝑖
. Then we treat the representations of different

item embedding learned from different behaviors as negative pairs.
Employing the InfoNCE [32], the objective of cross-behavior con-
trastive learning could be formulated as:

L𝑐𝑏𝐶𝐿 =
∑︁
𝑖∈I

− log
exp

(
sim

(
ê𝑈
𝑖
, ê𝐵
𝑖

)
/𝜏
)

∑
𝑗∈𝐼 ,𝑖≠𝑗 exp

(
sim

(
ê𝑈
𝑖
, ê𝐵
𝑗

)
/𝜏
) (9)

where sim(·, ·) is cosine similarity function, 𝜏 is the temperature of
the contrastive learning.

3.3 Within-behavior Contrastive Learning
In the above section, we model the user purchase behavior and the
basket behavior through a user-item interaction graph and a basket
hypergraph and learn the representation from these two graphs.
However, in real-world shopping transaction records, there are
always some items that are irrelevant to the user preference or to the
intents of the basket which appear as noise. The existence of noise
will affect the learned user shopping preferences and deteriorate
the quality of the representation.

To tackle this problem, we propose within-behavior contrastive
learning on the user purchase behavior and the basket behavior
respectively to achieve the goal of denoising the user-item inter-
actions and the basket-item interactions. To be more specific, we
generate the augmented view of the user-item interaction graph
and the basket hypergraph. Then, the message passing is performed
both on the original graph and the augmented graph. We denote
the representation of the user and item on the user-item interaction
graph as e𝑢 and e𝑈

𝑖
, the representation of the basket and item on the

basket hypergraph as e𝑏 and e𝐵
𝑖
. Also, we have the representation

of the user and item ê𝑢 , ê𝑈𝑖 on the augmented view of the user-item
interaction graph, and the representation of the basket and item ê𝑏 ,
ê𝐵
𝑖
on the augmented view of the basket hypergraph. The objective

of the user representation learning in within-behavior contrastive
learning is defined as:

L𝑈𝐶𝐿 =
∑︁
𝑢∈U

− log
exp (sim (e𝑢 , ê𝑢 ) /𝜏)∑

𝑣∈𝑈 ,𝑢≠𝑣 exp (sim (e𝑢 , ê𝑣) /𝜏)
(10)

We adopt the same contrastive objectives for item embedding
of the original view and the augmented view on the user-item
interaction graph, and the basket embedding as well as the item
embedding of the original view and the augmented view on the
basket hypergraph. Four contrastive terms are obtained as L𝑈

𝐶𝐿
,
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L𝐼𝑢
𝐶𝐿

, L𝐵
𝐶𝐿

, L𝐼𝑏
𝐶𝐿

. The final contrastive learning loss for within-
behavior denoising is the sum of these four terms:

L𝑤𝑏
𝐶𝐿

= L𝑈𝐶𝐿 + L𝐼𝑢
𝐶𝐿

+ L𝐵𝐶𝐿 + L𝐼𝑏
𝐶𝐿

(11)

3.4 Consistency-aware Augmentation
Up to now, we have investigated denoising techniques applicable
for each behavior respectively, as well as during the fusion of hetero-
geneous behaviors. However, developing an effective augmentation
strategy for contrastive learning that precisely identifies the noisy
interactions, considering these two types of behaviors, remains an
unresolved challenge.

Commonly used data augmentation methods for graph struc-
tures, such as stochastic edge and node removal, introduce substan-
tial randomness in altering the graph’s structure and identifying
noise. For example, when the edges removed are connected to im-
portant nodes, some fundamental relationships may be lost and
the underlying structure of the graph may be destroyed as a result.
Moreover, previous augmentation techniques that rely on a single
view can be unreliable in the context of basket recommendation.
An item can be considered noise from one perspective, while it may
carry meaningful information when viewed from another perspec-
tive, as depicted in Figure 1. To mitigate the risk of losing important
relationships, it is crucial to develop an augmentation strategy that
integrates crucial multi-view information and removes interactions
that consistently exhibit noise.

Aiming to identify the noise, we propose a consistency-aware
augmentation approach for cross-behavior and within-behavior
contrastive learning. To be more specific, we comment that a user-
item interaction or a basket-item interaction tends to be noisy
when the item is considered potentially noisy based on both the
user purchase behavior and the basket behavior. Inspired by the
definition of the node centrality in the graph [31], we define the
interaction importance 𝑠𝜖

𝑢−𝑖 and 𝑠
𝜖
𝑏−𝑖 upon two graphs as:

𝑠𝜖𝑢−𝑖 = log
(
𝛿𝑑 (𝑢) + 𝛿𝑑 (𝑖) + 𝛿𝑑_ℎ𝑦𝑝𝑒𝑟 (𝑖)

)
(12)

𝑠𝜖
𝑏−𝑖 = log

(
𝛿𝑑_ℎ𝑦𝑝𝑒𝑟 (𝑏) + 𝛿𝑑_ℎ𝑦𝑝𝑒𝑟 (𝑖) + 𝛿𝑑 (𝑖)

)
(13)

where 𝛿𝑑 (𝑢) and 𝛿𝑑 (𝑖) are the degree of the user and item node
on the user-item interaction graph. On the basket hypergraph, we
focus on both the degree of the hyperedge 𝛿𝑑_ℎ𝑦𝑝𝑒𝑟 (𝑏) which is
defined as the number of items contained on the basket hyperedge,
and the degree of the item vertex 𝛿𝑑_ℎ𝑦𝑝𝑒𝑟 (𝑖) which is defined as
the number of hyperedges connecting to this item vertex.

According to the expression of edge importance, the importance
of an edge is defined from the perspective of the user purchase
behavior as well as the basket behavior. We comment that a user-
item interaction or a basket-item interaction is more important
when it has greater edge importance on the corresponding graph.
To generate more meaningful augmentation, we are inclined to
drop the less important interactions.

To calculate the probability of dropping an edge 𝜖 , for exam-
ple, on the user-item interaction graph, we use normalization to
transform the edge importance 𝑠𝜖

𝑢−𝑖 of edge 𝜖 into the probability:

𝑝𝜖 =
𝑠max − 𝑠𝜖𝑢−𝑖
𝑠max − 𝑠min

· 𝑝 (14)

Table 1: Dataset Statistics.

#Users #Items Average
Basket Size

Average
#Baskets per User

Instacart 22168 40044 37.00 2.96
Tafeng 7119 11916 15.99 2.20

Valuedshoppers 9532 7860 19.94 17.66

where 𝑝 is the overall edge drop probability, 𝑠max and 𝑠min is themax
and min value of 𝑠𝑢−𝑖 . Following the same formula, the probability
of dropping a basket-item interaction 𝜖 on the basket hypergraph
can be obtained as well. According to the probability 𝑝𝜖 of dropping
the edge 𝜖 , we could obtain the augmentation view of the origi-
nal graph G where the probability that the edge 𝜖 belongs to the
augmentation view Ĝ is 1 − 𝑝𝜖 .

With consistency-aware augmentation, the positive pairs gener-
ated from two behavior views tend to share more common intrinsic
properties for better alignment in cross-behavior contrastive learn-
ing. While it can generate the more meaningful augmentation view
for within-behavior contrastive learning on the user-item interac-
tion graph and basket hypergraph respectively.

3.5 Prediction and Optimization
To perform recommendations, the ranking score of each user-item
pair considers both the user information and current basket infor-
mation:

𝑦 (𝑢,𝑏, 𝑖) = (1 − 𝑟 ) · e⊤𝑢 e𝑖 + 𝑟 · e⊤𝑏 e𝑖 (15)

where e𝑖 = e𝑈
𝑖
+e𝐵
𝑖
denotes the fused item embedding performed

with contrastive denoising, 𝑟 is a hyperparameter to balance the
capacity of the user and the basket in the recommendation.

We use the BPR loss [34] as the main recommendation loss.
We sample a positive item 𝑖 and a negative item 𝑗 for the user 𝑢,
where the positive item is selected within the current basket and
the negative item is sampled from items without being purchased.
The main loss is:

𝐿main = −
∑︁
(𝑢,𝑖, 𝑗 )

log𝜎
(
ŷ(𝑢,𝑏,𝑖 ) − ŷ(𝑢,𝑏,𝑗 )

)
+ 𝜆∥Θ∥22 (16)

where Θ is the model parameters and 𝜆 is a positive constant. To
improve recommendation with the self-supervised denoising tasks,
we leverage a multi-task training strategy to jointly optimize the
classic recommendation task, the cross-behavior contrastive task
and the within-behavior contrastive task. In this way, we have the
final multi-task loss as:

L = L𝑚𝑎𝑖𝑛 + 𝛼1L𝑐𝑏𝐶𝐿 + 𝛼2L
𝑤𝑏
𝐶𝐿

(17)

where 𝛼1 and 𝛼2 are hyperparameters to control the linear weight.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the perfor-
mance of our proposed BNCL. Our experiments intend to answer
the following research questions:
• RQ1: How does BNCL perform in the within-basket recommen-
dation task compared with the baseline models?
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Table 2: Experimental results on the three real-world datasets through different methods with % omitted. The best results are
highlighted in boldface. Underlined values indicate the second best.

Data Metric
Simple methods MF-based methods NBR methods GNN-based methods Denoising methods

BNCL
PersonPop-k BPRMF Triple2Vec DREAM TIFU-KNN LightGCN Basconv MITGNN SGL CLEA

Instacart

Recall@40 1.959 12.005 9.285 9.430 13.567 13.792 12.569 11.461 15.742 15.919 17.156

Recall@60 2.309 15.612 11.711 11.105 20.407 17.832 17.144 15.426 19.350 20.701 21.099

HR@40 13.377 56.928 46.405 44.542 54.174 61.355 57.725 64.705 63.423 65.334 67.169

HR@60 15.433 66.048 53.930 49.553 74.197 70.313 68.690 64.985 70.286 74.356 74.674

NDCG@40 4.127 14.451 14.359 12.061 5.794 18.463 15.157 14.526 21.492 19.390 22.742

NDCG@60 4.541 19.876 16.474 13.440 9.263 21.504 18.581 17.630 24.162 22.760 25.615

TaFeng

Recall@40 0.263 2.075 0.082 0.381 2.459 3.178 2.799 2.745 3.283 3.382 3.488

Recall@60 0.468 2.648 0.188 0.513 2.836 3.781 3.437 3.467 3.893 4.062 4.175

HR@40 1.063 6.634 0.300 1.634 8.586 10.200 9.052 8.867 10.583 10.755 11.845

HR@60 1.905 8.369 0.612 2.177 9.470 11.948 10.966 10.934 12.356 12.607 12.835

NDCG@40 0.234 2.051 0.078 0.321 0.870 3.898 2.879 2.497 4.000 4.054 4.356

NDCG@60 0.389 2.378 0.134 0.413 0.978 4.244 3.257 2.902 4.351 4.428 4.628

ValuedShopper

Recall@40 1.063 1.963 1.655 1.638 6.567 5.844 5.476 5.903 5.995 5.384 6.659

Recall@60 1.486 2.873 2.856 1.979 8.206 7.780 7.281 7.619 8.045 7.505 8.845

HR@40 3.910 6.359 5.417 3.161 20.219 19.600 18.413 20.275 20.216 17.701 22.136

HR@60 5.494 9.324 9.417 4.336 26.521 25.221 23.690 25.234 26.224 23.822 28.334

NDCG@40 1.092 1.840 1.747 1.579 2.581 5.489 5.485 6.035 5.659 4.766 6.364

NDCG@60 1.374 2.408 2.505 1.788 3.253 6.634 6.572 7.153 6.882 6.008 7.529

• RQ2: How do different components in BNCL contribute to the
performance?

• RQ3: How is the generalization ability of our proposed BNCL un-
der different circumstances (e.g., varying length of recommended
item list and backbones)?

• RQ4: How does the proposed BNCL perform in the presence of
noise (the robustness of BNCL to the varying ratio of noise added)?

4.1 Dataset
We evaluate the within-basket recommendation performance on
real-world datasets: Instacart 2, Tafeng 3 and Valuedshoppers 4.
• Instacart is a transaction dataset collected from an online shop-
ping grocery. It contains the record of over 3 million grocery
orders over time which come from more than 200,000 users.

• Tafeng contains Chinese grocery store transaction data over
four months released by ACM RecSys. It consists of the records
of over 13000 users’ shopping orders.

• Valuedshoppers provides almost 350 million purchase histories
from over 300,000 shoppers which includes a large set of users’
basket-level shopping behaviors. Considering a large number of
records, We sampled the transactions for training and prediction.

We treat the set of items purchased by a user during a time ses-
sion as a shopping basket. In order to make the basket informative
enough to be useful in the algorithm, we remove baskets contain-
ing less than 30 items for Instacart, and less than 10 items for the
Valuedshoppers and Tafeng due to the sparsity of the basket-item
2https://www.kaggle.com/c/instacart-market-basket-analysis
3https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
4https://www.kaggle.com/c/acquire-valued-shoppers-challenge

interactions in these two datasets. The statistics of the final pro-
cessed datasets are shown in Table 1. We split 80% items of each
basket as training data and the remaining 20% as test data for both
of the datasets.

4.2 Experimental Settings
4.2.1 Evaluation metrics. We evaluate the performance of models
by the Top 𝐾 recommendation metrics, including the Recall@K,
Precision@K, HR@K, and NDCG@K [18, 36]. We first compute the
recommendation score for the given user 𝑢 with all the items then
full ranking is executed to generate the top 𝐾 most possible items.

4.2.2 Baseline. We consider the following baselines for compari-
son:

Simple method:

• PersonPop-k: It is a basic method to return top 𝑘 items from the
training set in terms of the purchase frequency of a given user.

MF-based Methods:

• BPR-MF [34]: It is a method to model user and item interac-
tions. The representation is learned by maximizing the distance
between the user and its purchased and unpurchased items.

• Triple2vec [39]: It learns the user and item representation via the
triplets (𝑖𝑡𝑒𝑚, 𝑖𝑡𝑒𝑚,𝑢𝑠𝑒𝑟 ) sampled for a single shopping basket.

NBR Methods:
Additionally, we modify the relevant NBR (Next-Basket Recom-

mendation) methods to suit our within-basket recommendation
setting. Specifically, we treat the current partially provided basket
as the last basket in the shopping history for next-basket prediction.
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• Dream [49]: It leverages recurrent neural networks to model
the dynamics of users’ behaviors and the sequential patterns
between items.

• TIFUKNN [33]: It is a nearest neighbor-based model that out-
performs deep recurrent neural networks in NBR. It relies on the
similarity of the target user with other users and the purchase
history of the target user.

GNN-based Methods:

• LightGCN [17]: It is a simplified model of NGCF [43]. Lightgcn
directly uses the normalized summation of neighbors to perform
aggregation on the graph, which greatly improves the recom-
mendation performance.

• BasConv [29]: It constructs a UBI graph and then designs the
heterogeneous aggregators on the graph to realize an informative
message passing in representation learning.

• MITGNN [29]: It is the recent model focused on the within-
basket recommendation task, which retrieves multiple intents
across the defined basket graph to learn the representation of
users and items.

Denoising Methods:

• SGL [49]: It combines the collaborative graph neural network
filtering model with contrastive learning for recommendation by
perturbing the graph structure through simple data augmentation
operations on the graph structure.

• CLEA [33]: CLEA denoises the basket by automatically split-
ting the basket into positive and negative sub-baskets and using
anchor-guided contrastive learning. We adopt the idea of CLEA
and adapt the model to the within-basket recommendation task.

Note that we omit the comparison with the potential basket rec-
ommendation baseline PerNIR [2] as their objective focuses on
predicting the next item for the current basket rather than comple-
menting the entire basket.

4.2.3 Parameter settings. For fair comparisons, we adopt the fol-
lowing setting for all methods: the batch size is set to 1024; the
embedding size is fixed to 128; all embedding parameters are ini-
tialized by Xavier initialization [13]; the hidden dimension is 64
for all methods. We optimize each baseline method according to
the validation set. For LightGCN and SGL, we adopt 3 layers of
propagation to achieve their best performance on all datasets. For
BasConv model, 2 layers’ aggregation is performed to have the
best results. For our BNCL model, We fine-tune the hyperparame-
ter 𝑟 within the range of [0, 0.1, 0.2, 0.5] and 𝑝 within the range of
[0.1, 0.3, 0.5, 0.7]. the coefficients for both the cross-behavior and
the within-behavior contrastive learning are tuned in the range of
[1 × 10−1, 1 × 10−3, 1 × 10−5]. Our model converges best when the
learning rate is 5 × 10−4, and the number of propagating layers
is 2 for u-i and b-i graph. On Instacart, the coefficients for both
cross-behavior and within-behavior contrastive learning are 0.1;
On Tafeng, when the coefficients for cross-behavior and within-
behavior contrastive learning are set to 1 × 10−2 and 1 × 10−3
respectively, the model reaches the best performance; On Valued-
shoppers, we choose the coefficients as 1 × 10−4 and 1 × 10−5
respectively for cross-behavior and within-behavior contrastive
learning.

4.3 Results (RQ1)
In this section, we compare the performance of several state-of-
the-art baselines on the within-basket recommendation task on
three real-world datasets and the results for 𝐾 = 40, 60 are shown
in Table 2. The baselines are arranged according to the different
types of models.

We find that BNCL consistently outperforms othermethods, which
demonstrates its remarkable ability to extract informative represen-
tations by leveraging user-item interactions, basket-item interac-
tions by effectively filtering out irrelevant or noisy information. The
reported best-performing models are significant w.r.t. the second
best performing with p-value < 0.05. What’s more, the improvement
of the baseline methods varies across different datasets (e.g. refer-
ring to the underlined results), while our method offers a general
denoising approach that achieves stable enhancements.

The superiority of GNN-based models over classical models
(BPRMF and Triple2vec) clearly demonstrates the significance of
graph structure in modeling interactions and learning representa-
tions for within-basket recommendation tasks. However, we ob-
served that the GNN-based method BasConv, which directly incor-
porates basket behavior, did not perform as well as expected. This
observation suggests that poor-quality basket-item interactions can
hinder representation learning and negatively impact performance.

Next basket recommendation methods TIFU-KNN, as well as
CLEA, exhibited strong performance on several metrics as TIFU-
KNN reaches the second-best results with recall and hit rate on
ValuedShopper confirming the importance of the usage of the shop-
ping history in basket recommendation. TIFU-KNN’s poor perfor-
mance on NDCG indicates that non-neural network-based methods
tend to overlook the order of recommendations to some extent.
Additionally, we find that NBR methods heavily rely on the number
of purchased baskets so that it boosts better performance on Val-
uedShopper dataset where each user has more baskets on average.

It could be observed that methods such as SGL and CLEA which
take denoising into account achieve better performance, showing
the necessity of eliminating the effect of the noisy interaction in
basket recommendation. Comparing SGL and CLEA, CLEA achieves
better results since it focuses on denoising in the basket while SGL
performs contrastive learning only on the user-item view, which
proves the important role of basket denoising.

4.4 Ablation Study (RQ2)
In this section, we investigate the effectiveness of the proposed
BNCL by evaluating the impact of different components. We denote
the complementary basket hypergraph as B-I, the within-behavior
contrastive learning with consistency-aware augmentation on the
user-item interaction graph and basket view hypergraph as CA, and
the cross-behavior contrastive learning as CL Fusion. We replace
the consistency-aware augmentation with random edge perturba-
tions and denote this model as BNCL𝑟𝑎𝑛𝑑𝑜𝑚 . What’s more, BNCL𝑎𝑑𝑑
represents the BNCLwithout hyperparameter 𝑟 . Based on the typical
user-item interaction graph, the checkmark under the correspond-
ing module in Table 3 indicates whether this module was incorpo-
rated into the model. It can be seen that all the components are
reasonably designed and essential to the final performance. We can
observe that when any one of these components is removed, the
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(a) Recall@K (b) NDCG@K

Figure 3: Performance on two metrics of BNCL and a few
most representative baselines w.r.t. K in the range of
[5, 10, 20, 40, 60, 80, 100] on Instacart.

Table 3: Ablation Study of BNCL on Instacart.

B-I CA CL Fusion Racall@60 Precision@60 HR@60 NDCG@60

- - - 17.83 2.33 70.31 21.50
✓ - - 18.28 2.39 70.77 21.62
✓ - ✓ 20.17 2.64 73.50 23.91
✓ ✓ - 20.87 2.73 73.509 25.22

BNCL𝑟𝑎𝑛𝑑𝑜𝑚 20.56 2.70 72.48 25.29
BNCL𝑎𝑑𝑑 20.02 2.67 72.07 25.30
BNCL 21.10 2.77 74.67 25.62

performance drops accordingly on all metrics. The findings could
be summarized as follows:
• Incorporating the basket hypergraph leads to a noticeable en-
hancement in performance, confirming that basket behavior of-
fers additional valuable information for representation learning.

• Note that when integrating user purchase behavior and basket
behavior, the utilization of cross-behavior contrastive learning
yields the most significant improvement in recommendation
performance compared to directly combining the embeddings
learned from both behaviors (e.g., achieving a 10.59% increase in
NDCG). This finding shows that cross-behavior contrastive learn-
ing contributes to reducing the effect of irrelevant information
in the views of user purchase behavior and basket behavior by
keeping the invariant and essential semantics of the items, which
verifies the effectiveness of capturing the cooperative association
between different views.

• The experimental results with random edge perturbations aug-
mentation BNCL𝑟𝑎𝑛𝑑𝑜𝑚 and consistency-aware augmentation in-
dicate that the consistency-aware augmentation will better iden-
tify the noise compared to a random structural augmentation
and benefit the cross-behavior and within-behavior contrastive
learning, which is consistent with our motivation in Section 3.4

• Compared with BNCL, the performance of BNCL𝑎𝑑𝑑 gets worse,
which indicates that loosely adding the predictions of two sepa-
rate views will include noise and ultimately results in suboptimal
performance.

4.5 Case Study
4.5.1 Genralization Study (RQ3) . We conduct experiments to ver-
ify the robustness and the generalization ability of the proposed

Table 4: Experimental comparisons of BNCL on Instacart with
different backbones.

Backbone Recall@60 Precision@60 HR@60 NDCG@60

BPRMF 15.61 2.03 66.05 19.88
BPRMF-BNCL 16.72 2.51 67.69 20.39

Fism 15.73 2.06 64.33 20.92
Fism-BNCL 16.57 2.18 65.23 22.65

LightGCN 17.83 2.33 70.31 21.50
LightGCN-BNCL 21.10 2.77 74.67 25.62

BNCL. First, we test BNCL with different 𝐾 in the range of [5, 10,
20, 40, 60, 80, 100]. The results are presented in Figure 3, which
shows that on all metrics, with the increasing value of 𝐾 , our model
consistently outperforms the baseline methods.

Second, we test our model with the different message-passing
backbones on the user-item interaction graph. In the typical recom-
mendation algorithms, user-item interaction data is often modeled
as a user-item bipartite graph like what we employed in the user-
item interaction graph part. Numerous algorithms have focused
on representation learning using user-item graphs [6, 48]. Fism
[21] proposed to improve the representation learning by training
with the similarity matrix between items and for each training
sample, it removes the direct link between the current user and
its positive items when calculating the objective. We adopt Fism
message-passing method and MF method on the user-item inter-
action modeling part of BNCL instead of the LightGCN message-
passing to learn the embedding. The results on Istacart dataset are
shown in Table 4, we can find that our model still performs the best
even though the backbone has changed, which demonstrates the
robustness and stability of our method.

4.5.2 Denoising Capability (RQ4) . In this section, we further in-
vestigate the denoising performance of the proposed method. We
introduce varying levels of noise to the user-item interaction graph
and the basket hypergraph, specifically adding 20%, 40%, 60%, and
80% noisy interactions, and then observe the performance of BNCL .
we consistently observe that BNCL outperforms both LightGCN and
SGL across all noise ratios. As depicted in Figure 4, we note that as
the ratio of added noise increases from 20% to 80%, our method ex-
periences a mere 6.99% decline in Recall@60, whereas LightGCN’s
performance drops by 18.12% and SGL’s by 9.00%. Similarly, the
drop in NDCG@60 for our method is only 2.22%, whereas Light-
GCN experiences a 10.06% decline and SGL an 8.49% decline. These
results serve as further evidence of the robustness of our model in
handling noisy interactions. The evaluation under more advanced
attack algorithms [10, 20] is left as future work.

5 RELATEDWORK
In this section, we briefly review the related work on basket recom-
mendation and contrastive learning for recommendation.

5.1 Basket Recommendation
Basket recommendation (BR) [12, 23] is to recommend a set of items
that are mostly possible purchased by targeted users based on their
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(a) Recall@60 (b) NDCG@60

Figure 4: Performance on two metrics of BNCL and LightGCN
with varying ratios of noise added on Instacart.

shopping records. The basic idea is to capture correlations and per-
form the prediction through Collaborative Filtering (CF) methods
[18, 46, 56] or Markov Chain (MC) methods [35, 41]. FPMC [35] is
proposed to capture both sequential effects and long-term user taste
where each user-specific transition is modeled by an underlyingMC.
Focus on predicting the items for the user’s next baskets, DREAM
[53] used an LSTM network [19] to capture the series features of the
basket sequence. Some studies explore within-basket recommenda-
tions that also consider the content of the current basket. Triple2vec
[39] improves the within-basket recommendation by constructing
the training samples as triples of the user and the items. DBFM [26]
contributes a basket recommendation solution based on factoriza-
tion with a deep neural network. PerNIR [2] models the short-term
interests of users represented by the current basket, as well as their
long-term interests to address the task. Recently, GNN has shown
its great potential to capture the interactions among the user and
the item in representation learning [6, 37, 43]. Basconv [29] is pro-
posed to capture heterogeneous interaction signals on a UBI graph
by designing three different aggregators for user, basket and item
entities. MITGNN [28] combines the translation-based model with
the GNN to improve within-basket recommendation via retrieving
the multi-intent pattern. In practice, noisy interactions are easy to
occur during shopping behaviors and will hinder the capture of
users’ preferences and item properties while few works explicitly
consider denoising in BR. For NBR, CLEA [33] used a denoising
generator to denoise the baskets and then extract relevant items
to enhance recommendation performance. However, the identifi-
cation of noisy interactions and the elimination of their impact
on heterogeneous behaviors in basket recommendation have been
overlooked in the current literature.

5.2 Contrastive Learning for Recommendation
Contrastive learning aims to learn representation by minimizing
the distance of positive instances while making negative instances
far apart in the representation space [8], which has achieved great
success on graph [15, 16, 52] and hypergraph [47] representation
learning, as well as the application in recommender systems [49]
and dense retrieval [22, 54, 55]. A Contrastive multi-view graph
representation learning algorithm [16] is introduced for learning
both node and graph-level representations by contrasting structural
views of graphs. CLRec [57] bridged the theoretical gap between

contrastive learning objective and traditional recommendation ob-
jective, which showed that directly performing contrastive learning
can help to reduce the exposure bias. Neighborhood-enriched Con-
trastive Learning (NCL) [27] explicitly incorporated the potential
neighbors into contrastive pairs by introducing the neighbors of a
user (or an item) from graph structure and semantic space respec-
tively. CMP-PSP [50] effectively leveraged contrastive multi-view
learning and pseudo-siamese networks to mitigate data sparsity and
noisy interactions. CCFCRec [58] adopts contrastive collaborative
filtering for cold-start item recommendation which applies con-
trastive learning to transfer the co-occurrence signals to the content
CF module. KACL [40] performs contrastive learning across the
user-item interaction view and KG view to include the knowledge
graph in the recommendation while eliminating the noise it may
introduce. Despite these advancements, the potential of contrastive
learning in denoising within basket recommendation remains un-
derexplored. Our work aims to harness the power of contrastive
learning in behavior denoising and integrating diverse behaviors.

6 CONCLUSION
In this paper, we formulate the basket recommendation by inte-
grating the basket behaviors into user-item interaction modeling
with a light hypergraph message passing schema and a joint self-
supervised learning paradigm. We systematically illustrate the
noise issues in the basket recommendation problem. A general
basket recommendation framework BNCL via noise-tolerated con-
trastive learning is proposed accordingly to improve robustness
against the noise in BR. To be specific, we suppress the cross-
behavior noise by making use of additional supervision signals
with cross-behavior contrastive learning. Then to inhibit the within-
behavior noise in the user and basket interactions, we propose to
exploit invariant properties of the recommenders w.r.t augmenta-
tions through within-behavior contrastive learning. In addition,
a novel consistency-aware augmentation approach is designed to
better identify noisy interactions by comprehensively considering
the two types of interactions. Extensive experimental results over
three datasets onwithin-basket recommendation task show that our
proposed method outperforms state-of-the-art baselines in terms
of various ranking metrics.

One direct extension of our work is using BNCL as an effective
tool to suppress the noise in multi-view learning and help the model
fusion. Additionally, incorporating temporal dynamics and the or-
der of the baskets into our current framework is a promising avenue
for future research. Moreover, we’d like to test our method with
more advanced backbones and self-supervised learning strategies.
We’re also interested in evaluating the bias [44] and fairness [45]
of our approach under various settings.
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